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ISENTROPE ENERGY, HUGONIOT TEMPERATURE,
AND THE MIE-GRUNEISEN EQUATION OF STATE

Charles A. Forest

Group DX-1, MS P952, Los Alamos National Laboratory, Los Alamos, NM 87545

Analytic expressions for both the isentrope energy and temperature along the Hugoniot curve may be
expressed in terms of a single intcgral function fc: a Mie-Gruneisen equation of state with constant heat

capacity c,.

INTRODUCTION

The Mie-Gruneisen equation of state with a
Hugoniot reference line is commonly used in
calculations. The temperature on thc Hugoniot
and isenuope curves are at tlimes desired.
Calculation of the temperature along the Hugoniot
was piven by Walsh and Christlan (1), the
expression for which contains an integral function.
This integral, for constant beat capacity c,, and
general Gruneisen parameter [(v)= v(dp/de),,
will be shown to be that intcgral which is
necessary for the calculation of iseniropic energy.

‘The calculation of \emperature or the calculation
of an arbitrary isentrope is often useful in fluid
dynamic modeling. These properties are used in
mixture equations of state that assume pressure
equilibrium along with temperature cquilibrium or
Isentropic behavior following a first shock. There
is a convenience in having the single integral
function /(u) that facilitaies both purposes.

BASIC FORMULATION

The Mie-Grunefscn equation of state using a
first-shock Hugoniot reference line is written

p(v.e) m (TANe - ¢y(v)) +py(v) )

\'l—
\_\f

where v = specific volume, ¢ = specific internal
coergy, p,(v)es Hugoniot pressure, ¢,(v)=
4(py(v) + pg) (vg-v) + ¢5, the  Hugoniot
relation.

The function p,(v) is calculated from two

Rankine-Hugoniot relations (conservation of mass
and momemtum) and the empirical U, (u) relation

(the shock velocity into undisturbed material).
These cquations are, as functions of the shock

particle velocity u, vy (u) w vo(U,(u)-u)/U,(u),
Pa(u)=poul,(u)+ py.and U,(u)=c+su+ qu'.

leting u,(v) be the inverse v,(u), then by
compositdon p,(v) = p,(u,(v)).

The empirical U,(u) reladon is represented
pleccwise by a linear or quadratic over n segments,
u)<up<...<u,,; A comesponding set of
opposiiely ordered volume scgments are defined,
ViSV2..5V,,) with v, = vy(u,) I Uy(u) =

C+Su+ qu2 on a segment, then w, (v) is obtined
by solutiun of the quadratic equation

(_‘L'f[:_vf).l_ u+i)(v)=0 where
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u (v) =clvg =vi/(vg = s(vg = v))
If ¢ =0, then u,(v)= uyv).

If @ # 0, the two roots for u, (v) are

ug = 2u,(v)/(l+ Ji-4qu,0v° /c]and

u, =c/(qu,).

The root u, has the comect limit for ¢ = 0 and
has good numerical precision; and for ¢ # 0, the
u, root has similar precision. Both are calculaied
using the fact that f the equation
ax?+ bx + ¢ 20 bas roots x; and x, then
¢ = ax,x;. The proper root must be selecied o
lie in the segment determined by v.

The derivatives of p,(v)=z p,(u,(v)) with

respect o specific volume v, or of any other
function parametrically given as a function of u,
requires the derivalive du, /dv, which can be

calculated implicitly from the mass equation
U,(uy(v) v = vo[U, (uy(v)) = up(v)}
Differentation gives
du . U u(v)
7} 'Zi"‘vo -v) - vol

Using this resuly, with u = u, (v),

An expression (or the Gruneisen gamma I in
terms of ¢,. T, B. and ¢? can be obtained from
two thermodynanmiic equations related to T

cp = cy(1 + BIT)and c, = Bc? /T, where

¢p=(3e/dT), + p(av/3T),. ¢, = (de/aT),
B = (3v/aT),/v.and ¢ =(3p/3p),.

Equating the two ¢, expressions and solving the
resulling quadratic equation for I" gives

2pc’/sc,)
1+ 1+ 4@ BT

r=

ISENTROPE ENERGY AND MIE-
GRUNEISEN EOS

From the thermodynamic equation, Tds = de +
pdv (with ds = () and the equation of swate,

d i
7‘3- = = p(v,e;(v)

where ¢, (v) is the isentrope energy. The
differential equation for ¢, is then

d
T+ (T/vie, = (T/)ey(v) = py(v) @

with initial value ¢,(v;) = ¢,. Lel now g(v) =
TA), and let Giv) = exp(jg(vm) be the

integrating factor.

For two special cases of (TA), these functions
are as follows:

1. T =T,, then g(v) = (TA) and G(vj = ',
2. I{TA = Ty/vy then giv) = p,Iy and
G(v) = exp {polgv}
Now multiply equation (2) by G and integrute,
6 (v)U(v) - e,G(v,) =

)
j' G(v)lg(v)ey (V) = pr(v)]dy

Y



Note that % = G{v)g(v) and inlcgrate by parts
v Yo
v (4
jcg ertv = [Ge,]) -jc—dv-*- dv.
v, ]
Also note

de

?‘1," +Pa= " %'(Vo"") + ‘s(Pn'Po)
Finally then

e, (VIG(v) - €,G(v;) = G(v) e,(v) - G(v,)ep(vi)
(o[ @
'I > E”'(VO‘V)"PA‘PO]‘W

i

The rcmaining integral is not expressible in
terms of elementary funcuons, and is not easily
and accurately fit as a function of volume v
because p,(v) has a singular point at
v = Vy(s - 1)/s when U, wc +su. Recall that

the particle velocity has no such trouble and can be
used for the integration change of variable. Thus
let

I(v) = J%[%‘”o -v) + PA ‘Po}”’
‘o

(note lower limit of Integraton). Changing
integration variable, let

dv
v = vy(u) and dv = -mf-du.

This particular choice of varinble change is
advantageous because p,(v) = p,(uy(v)) and

dp

dp, d du, . dv
r R A UREE 2

Also note

(vo —v) = vou/U,, py = py = pouU,, and

dau
th Vo “?I-IL - UJ
rrl m

Then

G(v,(u) [dp, v
u) = I B oo -

dv
(Px — Po) #]du. and finally,

) = j' Sytuh & 2yl Sha @

and

¢, (vIG(v) = ¢,G(v)) + ¢, (VIG(v) - ey(v,)G(v,)-
UCNOERICNLT)!

Remark: ¢,(v) is the energy of the iscntrope
through the point (v, e,@vhich may be any
point in  the domain of p(v,e). A common
usage is the case where ¢, =¢,(v,) that is the

isenrope for a materia) element that has
experienced a first shock,

The function MNu) is represented on each
(u,., u;py) interval by the form I(u) =

a; + u™a;+ ayu + ap’ s ag’ vau’) I
the neighborhood of ¥ = 0, we let m = 3, and

clsewhere let m = 1. For calculation of the
derivative of J{u), the exact expression

du
-‘% = G(v“(u))u'zqal-/u,(u) i5 used.

The use of component cquations of stale in a
cquilibrium mixture equation of stale sequires not
only an accurate functon value but an accurate
durivative so that the iteradve equilibrium solution
method will converge quickly, To that end, the
function /(u) s fited by Ntting the derivative of



I(u) and Ku) simulaneously. One need not use
polynomials, any suitable analytically integrable
basis function set would do.

TEMPERATURE AND HUGONIOT
TEMPERATURE

The temperature as a function of (v.e) is

-e (v)
T(v, e) = ie__cﬁ(_V)— + Th(v)

where e,(v) = Hugoniot energy and T,(v) =
Hugoniot temperature, and ¢, = constant beat
capacity.

The temperature on the Hugoniot T,(v) is
calculated via Walsh and Christian's method (1).

They writs on page 1554,
dT; s
‘v#*(%‘)ﬁ =303 o)

Changing variable to (v.e), p(v.T) = p(v. e(v.T))

(3).- () G8) e

‘The differential equation Is then

1 4

dT, dp
Do b £ n-n)

with initial value T, (vy) = Tp. Using the same

integruting factor and nolation as in the
integration of the Isenrope cnergy cquation,

T.(V) G(v) - TUG(V()) =

v dp
I '}%{7"' (vo-v) + p, -po}dv.
Ve

For ¢, = constant, the integral is just I(vV ¢,. and
thus

T,00 Gv) = ToGvg) + L 1uy ().
\ 4
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